Very Short Introduction to Calibrated Geometry

Jakob R. Stein

UCL

May 14, 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Harvey/Lawson Calibrated Geometries (1982)

 Can often distinguish geometries by special sub-manifolds, e.g. geodesics, or foliations.

Harvey/Lawson Calibrated Geometries (1982)

 Can often distinguish geometries by special sub-manifolds, e.g. geodesics, or foliations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• May be interested in Riemannian manifolds (M, g) with distinguished forms, e.g. special holonomy.

Harvey/Lawson Calibrated Geometries (1982)

- Can often distinguish geometries by special sub-manifolds, e.g. geodesics, or foliations.
- May be interested in Riemannian manifolds (M, g) with distinguished forms, e.g. special holonomy.
- Calibrated geometry relates these forms to the volume form of the induced metric ι^*g of an immersed submanifold $\iota: N \hookrightarrow M$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Definition (Calibration)

 $\varphi \in \Omega^k(M)$ of Riemannian manifold (M, g) is a *calibration* if:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- *dϕ* = 0
- $\varphi(e_1, \ldots, e_k) \leq 1$ for all unit tangent vectors e_i .

Definition (Calibration)

 $\varphi \in \Omega^k(M)$ of Riemannian manifold (M,g) is a *calibration* if:

- *dϕ* = 0
- $\varphi(e_1, \ldots, e_k) \leq 1$ for all unit tangent vectors e_i .

Example

Any k-form on Euclidean \mathbb{R}^n with constant coefficients can be rescaled so that it is a calibration.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Definition (Calibration)

 $\varphi \in \Omega^k(M)$ of Riemannian manifold (M,g) is a *calibration* if:

- *dϕ* = 0
- $\varphi(e_1, \ldots, e_k) \leq 1$ for all unit tangent vectors e_i .

Example

Any k-form on Euclidean \mathbb{R}^n with constant coefficients can be rescaled so that it is a calibration.

We will see more interesting examples later, but the point is that calibrations are fairly abundant.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Definition (Calibrated sub-manifold)

Let φ be a calibration on Riemannian manifold (M, g). Submanifold $N \subset M$ calibrated w.r.t to φ if $\varphi(e_1, \ldots, e_k) = 1$ for oriented orthonormal basis for TN (i.e. φ is the volume form).

Definition (Calibrated sub-manifold)

Let φ be a calibration on Riemannian manifold (M, g). Submanifold $N \subset M$ calibrated w.r.t to φ if $\varphi(e_1, \ldots, e_k) = 1$ for oriented orthonormal basis for TN (i.e. φ is the volume form).

Example

In the previous example, on Euclidean \mathbb{R}^n choose coordinates x_i so that k-form $\varphi = dx_1 \wedge \ldots \wedge dx_k$. Then φ calibrates the plane $\{x \in \mathbb{R}^n \mid x_{k+1} = \ldots = x_n = 0\}.$

Lemma (Application)

Calibrated sub-manifolds are minima of the volume functional over a fixed homology class.

For N to be a critical pt of volume functional is a 2nd order (elliptic) p.d.e. but calibrated condition 1st order p.d.e.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For M to have calibrated sub-manifolds, must have enough calibrated planes at each $T_p M$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- For M to have calibrated sub-manifolds, must have enough calibrated planes at each $T_p M$.
- Observe that if φ is a parallel form for the LC-connection on (M, g), and is invariant under Hol_p , then φ is a calibration at $p \in M$ iff it is a calibration on M.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

- For M to have calibrated sub-manifolds, must have enough calibrated planes at each $T_p M$.
- Observe that if φ is a parallel form for the LC-connection on (M, g), and is invariant under Hol_p , then φ is a calibration at $p \in M$ iff it is a calibration on M.
- If φ at p is invariant under Hol_p, then the set of φ-calibrated planes in T_pM is acted on by Hol_p, so (usually) this means there are lots of calibrated planes at p.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- For M to have calibrated sub-manifolds, must have enough calibrated planes at each $T_p M$.
- Observe that if φ is a parallel form for the LC-connection on (M, g), and is invariant under Hol_p , then φ is a calibration at $p \in M$ iff it is a calibration on M.
- If φ at p is invariant under Hol_p, then the set of φ-calibrated planes in T_pM is acted on by Hol_p, so (usually) this means there are lots of calibrated planes at p.

Example (Kähler i.e. Hol = U(n))

Let (M, g, ω) be Kähler: then $\frac{1}{k!}\omega^k$ is a calibration and its calibrated submanifolds are the complex k-dimensional submanifolds.

Let (M, g, ω, Ω) be Calabi-Yau. Then $\operatorname{Re}\Omega$ is a calibration, and calibrated submanifolds are *special Lagrangian* (SL) i.e. N is SL iff $\omega|_N \equiv \operatorname{Im}\Omega|_N \equiv 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let (M, g, ω, Ω) be Calabi-Yau. Then $\operatorname{Re}\Omega$ is a calibration, and calibrated submanifolds are *special Lagrangian* (SL) i.e. N is SL iff $\omega|_N \equiv \operatorname{Im}\Omega|_N \equiv 0$.

Key ingredient in Mirror Symmetry/SYZ conjectures. An interesting theorem:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let (M, g, ω, Ω) be Calabi-Yau. Then $\operatorname{Re}\Omega$ is a calibration, and calibrated submanifolds are *special Lagrangian* (SL) i.e. N is SL iff $\omega|_N \equiv \operatorname{Im}\Omega|_N \equiv 0$.

Key ingredient in Mirror Symmetry/SYZ conjectures. An interesting theorem:

Theorem (McLean)

Let (M, g, ω, Ω) be Calabi-Yau, and N compact special Lagrangian submanifold. Then the moduli space $\mathcal{M}(N)$ of special Lagrangian deformations of N is a smooth manifold of dimension $b_1(N)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Let (M, g, ω, Ω) be Calabi-Yau. Then $\operatorname{Re}\Omega$ is a calibration, and calibrated submanifolds are *special Lagrangian* (SL) i.e. N is SL iff $\omega|_N \equiv \operatorname{Im}\Omega|_N \equiv 0$.

Key ingredient in Mirror Symmetry/SYZ conjectures. An interesting theorem:

Theorem (McLean)

Let (M, g, ω, Ω) be Calabi-Yau, and N compact special Lagrangian submanifold. Then the moduli space $\mathcal{M}(N)$ of special Lagrangian deformations of N is a smooth manifold of dimension $b_1(N)$.

Example (Hol = G_2)

Let (M, g, ϕ) be G_2 . Then $\phi, *\phi$ are calibrations. Calibrated submanifolds are called *associatives* and *co-associatives* respectively. N is co-associative iff $\phi|_N \equiv 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Let (M, g, ω, Ω) be Calabi-Yau. Then $\operatorname{Re}\Omega$ is a calibration, and calibrated submanifolds are *special Lagrangian* (SL) i.e. N is SL iff $\omega|_N \equiv \operatorname{Im}\Omega|_N \equiv 0$.

Key ingredient in Mirror Symmetry/SYZ conjectures. An interesting theorem:

Theorem (McLean)

Let (M, g, ω, Ω) be Calabi-Yau, and N compact special Lagrangian submanifold. Then the moduli space $\mathcal{M}(N)$ of special Lagrangian deformations of N is a smooth manifold of dimension $b_1(N)$.

Example (Hol = G_2)

Let (M, g, ϕ) be G_2 . Then $\phi, *\phi$ are calibrations. Calibrated submanifolds are called *associatives* and *co-associatives* respectively. N is co-associative iff $\phi|_N \equiv 0$.

Example (Hol = Spin(7))

Let (M, g, Φ) be Spin(7). Then Φ is a calibration, and calibrated submanifolds are called Cayley submanifolds.

Analytic Problems

Compactness of the space of minimal/calibrated sub-manifolds (e.g. integral currents)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Immersions vs. embedding
- Singular calibrated sub-manifolds

Analytic Problems

- Compactness of the space of minimal/calibrated sub-manifolds (e.g. integral currents)
- Immersions vs. embedding
- Singular calibrated sub-manifolds

Other interesting directions

 Constructions of calibrated submanifolds (e.g. with symmetries, or by gluing).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Deformation theory/Moduli (see theorem of McLean).

Analytic Problems

- Compactness of the space of minimal/calibrated sub-manifolds (e.g. integral currents)
- Immersions vs. embedding
- Singular calibrated sub-manifolds

Other interesting directions

- Constructions of calibrated submanifolds (e.g. with symmetries, or by gluing).
- Deformation theory/Moduli (see theorem of McLean).

Applied mathematics

- Counting invariants for special holonomy (see conjectures of Joyce, Donaldson/Segal).
- Instantons/monopoles: bubbling along calibrated sets (see paper of Tian, work of Haydys).
- Problems in minimal sub-manifolds/mean curvature flow (e.g. Hsiang/Lawson conjecture).