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Equations of motion with local
symmetries, i.e. some differential
equation F (x) = 0 invariant under Lie
group G of transformations, where the
element g ∈ G acting depends on x.
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The ”Standard Model” of particle
physics has G = U(1)× SU(2)× SU(3) Local symmetries
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Background: Topology

Principal bundles

Let G be a Lie group. A principal
G -bundle P over manifold M is a fibre
bundle with fibre G , and a (free,
transitive) action of G on the fibre: i.e.
Locally (on open sets U ⊂ M) we have
P|U ∼= U × G , with some transition
maps G → G between the fibres over
different open sets.

Example

Let M = M3 be a 3-manifold,
G = SU(2), then the trivial bundle
P := M × SU(2) is a principal bundle.
In fact, one can show every
SU(2)-principal bundle over M3 is
trivial.

Gauge group G
The gauge group G := Aut(P), i.e. the
group of G -equivariant maps P → P
that preserve the fibres of P. Since it
preserves the fibre, and each fibre is
generated by the action of G , an
element in G can also be thought of as
equivariant map from P to G .

Adjoint Bundle AdP

AdP := P ×Ad g, i.e. (P × g) /G where
G acts on its lie algebra g via the
adjoint representation.

Example

P := M × SU(2) as in the previous
example. Then AdP ∼= M × su(2).
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Background: Differential Geometry

Connections A ∈ A
A connection (locally on U) at
(x , g) ∈ U × G is given by
A = g−1dg + gAUg−1 where AU is a
one-form on U with values in the lie
algebra g of G . Explicitly, if
x =

(
x1, . . . , xn

)
are coordinates on U,

and Ei : U → g, AU |x =
∑

i Ei (x)⊗dx i .
Warning: this depends on our choice of
coordinates. We will denote the space
of connections on a fixed bundle A.

There is an action of φ ∈ G (viewed as
an element of G) on A given by:
AU 7→ φdφ+ φ−1AUφ.

Curvature FA

The curvature of a connection A is
defined by FA := dA + A ∧ A. Here
A ∧ A means I take the Lie bracket of
the lie algebra part of A and the wedge
product of the one-form part. This is a
2-form with values in g.

φ ∈ G acts via the adjoint
representation on FA, i.e.
Fφ(A) = φ−1FAφ.
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Background: Differential Geometry (cont.)

Flat connections

We say a connection is flat if FA = 0.
Note that this condition is preserved by
the action of G.

Example

Let P = M × SU(2) be as in the
previous example, then a flat
connection is given by the trivial
connection Γ, Γ := g−1dg .

Fact

A is an affine space w.r.t to
AdP ⊗ Ω1(M): i.e.
A− A′ ∈ AdP ⊗ Ω1(M) for A,A′ ∈ A

Example

Let P = M × SU(2), as in the previous
example, then A− Γ = su(2)⊗ Ω1(M).

Theorem

There is a bijection of sets {A ∈ A |
FA = 0}/G = hom (π1(M),G) /G ,
where G acts via conjugation on
hom (π1(M),G) /G .
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Motivations

In finding invariants, we usually take some bundle our manifold with
G = U(1), SU(2) or SO(3). The U(1) case, while interesting, is somewhat
different to the SU(2)/SO(3) cases. Examples of the latter:

Instanton Floer Homology for 3-manifolds

Donaldson Invariants for 4-manifolds - e.g. existence of infinitely many
non-smooth manifolds, exotic R4.

Donaldson-Segal programme for gauge theory in higher dimensions.

Now we are armed with some facts about connections, we will look at an
example: a simple type of gauge invariant called the Casson invariant
(interpretation due to Taubes).
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Casson Invariant

Let M be a compact 3-manifold with a trivial bundle P = M × SU(2). Then
A− Γ = su(2)⊗ Ω1(M). Let A# ⊂ A denote the subset where G acts with
stabiliser ±1 and denote B := A/G (likewise B#) We will assume M is a
homology-sphere, i.e. H∗(M) = H∗(S

3).

Fact

B# is an infinite dimensional smooth manifold.

Casson Invariant Ca(M)

Informally, the Casson invariant is ”the signed count of flat connections on P”,
or ”the Euler characteristic of B#”.
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Analogy

If (M, g) Riemannian manifold, v (non-degenerate) v.field, then:

χ(M) =
∑

p|v(p)=0

sign(det ∇v |p)

Here ∇ is the Levi-Cevita connection on (M, g). At each point p, ∇v |p is a
finite dimensional matrix on TpM.

Strategy

Define a one-form on B#, use some metric to make it a vector field, and find a
way to take its derivative, and make sense of sign of determinants in infinite
dimensional space T[A]B#.
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Identify TAA with the vector space su(2)⊗ Ω1
p(M). We use the one-form:

f :A → T ∗A

fA(a) :=

∫
M

tr (a ∧ FA)

This descends to B, and the flat connections are its zeroes.

Also equip M with a Riemannian metric with Hodge star ∗, then use the metric
on A:

〈a, b〉 = −
∫
M

tr (a ∧ ∗b)

There is a natural notion of a covariant derivative (omitting details) to get
∇fA, an infinite-dimensional matrix on T[A]B#.
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Lemma

∇fA is closed, has real, discrete eigenvalues, and the set of eigenvalues has no
accumulation points.

Can assume 0 is not an eigenvalue (non-trivial). Set of eigenvalues of ∇fA
looks like a bunch of points on the real line.

Spectral Flow

So for such [A] , [A′] ∈ B#, pick a path between them in B#, define:

n
(
A,A′

)
= (# eigenvalues of∇fA crossing 0 from the right−

# eigenvalues of∇fA crossing 0 from the left) mod2 = ±1

One can show this is well-defined and path-independent. Pick some non-trivial
flat connection [A] ∈ B#, then define the (unsigned) Casson invariant:

Ca(M) =
∑

[A′] 6=[A]|FA′=0

n
(
A,A′

)
It turns out this is independent of the choices of Riemannian metric, and the
flat connection used.
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Closing Remarks

In the case of M = S3, there are
no non-trivial flat connections, so
Ca(S3) = 0.

Casson originally defined his
invariants without gauge theory,
using something called a Heegaard
splitting (pictured).

This invariant is just the beginning
of a wider story of gauge theory,
but this is the model example.
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