Introduction to Gauge Theory and Invariants

Jakob R. Stein

UCL

October 7, 2020

```
Plan
```

- History
- Mathematical background
- Motivation

■ Example: Casson invariant

History

Physics

Equations of motion with local symmetries, i.e. some differential equation $F(x)=0$ invariant under Lie group G of transformations, where the element $g \in G$ acting depends on x.

History

Physics

Equations of motion with local symmetries, i.e. some differential equation $F(x)=0$ invariant under Lie group G of transformations, where the element $g \in G$ acting depends on x.

Example

The "Standard Model" of particle physics has $G=U(1) \times S U(2) \times S U(3)$

History

Physics

Equations of motion with local symmetries, i.e. some differential equation $F(x)=0$ invariant under Lie group G of transformations, where the element $g \in G$ acting depends on x.

Example
The "Standard Model" of particle physics has $G=U(1) \times S U(2) \times S U(3)$

Local symmetries

Background: Topology

Principal bundles
Let G be a Lie group. A principal G-bundle P over manifold M is a fibre bundle with fibre G, and a (free, transitive) action of G on the fibre: i.e. Locally (on open sets $U \subset M$) we have $\left.P\right|_{U} \cong U \times G$, with some transition maps $G \rightarrow G$ between the fibres over different open sets.

Background: Topology

Principal bundles

Let G be a Lie group. A principal G-bundle P over manifold M is a fibre bundle with fibre G, and a (free, transitive) action of G on the fibre: i.e. Locally (on open sets $U \subset M$) we have $\left.P\right|_{U} \cong U \times G$, with some transition maps $G \rightarrow G$ between the fibres over different open sets.

Example

Let $M=M^{3}$ be a 3-manifold, $G=S U(2)$, then the trivial bundle $P:=M \times S U(2)$ is a principal bundle.
In fact, one can show every $S U(2)$-principal bundle over M^{3} is trivial.

Background: Topology

Principal bundles

Let G be a Lie group. A principal G-bundle P over manifold M is a fibre bundle with fibre G, and a (free, transitive) action of G on the fibre: i.e. Locally (on open sets $U \subset M$) we have $\left.P\right|_{U} \cong U \times G$, with some transition maps $G \rightarrow G$ between the fibres over different open sets.

Example

Let $M=M^{3}$ be a 3-manifold, $G=S U(2)$, then the trivial bundle $P:=M \times S U(2)$ is a principal bundle.
In fact, one can show every
$S U(2)$-principal bundle over M^{3} is trivial.

Gauge group \mathcal{G}

The gauge group $\mathcal{G}:=\operatorname{Aut}(P)$, i.e. the group of G-equivariant maps $P \rightarrow P$ that preserve the fibres of P. Since it preserves the fibre, and each fibre is generated by the action of G, an element in \mathcal{G} can also be thought of as equivariant map from P to G.

Background: Topology

Principal bundles

Let G be a Lie group. A principal G-bundle P over manifold M is a fibre bundle with fibre G, and a (free, transitive) action of G on the fibre: i.e. Locally (on open sets $U \subset M$) we have $\left.P\right|_{U} \cong U \times G$, with some transition maps $G \rightarrow G$ between the fibres over different open sets.

Example

Let $M=M^{3}$ be a 3-manifold, $G=S U(2)$, then the trivial bundle $P:=M \times S U(2)$ is a principal bundle. In fact, one can show every $S U(2)$-principal bundle over M^{3} is trivial.

Gauge group \mathcal{G}

The gauge group $\mathcal{G}:=\operatorname{Aut}(P)$, i.e. the group of G-equivariant maps $P \rightarrow P$ that preserve the fibres of P. Since it preserves the fibre, and each fibre is generated by the action of G, an element in \mathcal{G} can also be thought of as equivariant map from P to G.

Adjoint Bundle AdP

$\operatorname{Ad} P:=P \times_{A d} \mathfrak{g}$, i.e. $(P \times \mathfrak{g}) / G$ where G acts on its lie algebra \mathfrak{g} via the adjoint representation.

Background: Topology

Principal bundles

Let G be a Lie group. A principal G-bundle P over manifold M is a fibre bundle with fibre G, and a (free, transitive) action of G on the fibre: i.e. Locally (on open sets $U \subset M$) we have $\left.P\right|_{U} \cong U \times G$, with some transition maps $G \rightarrow G$ between the fibres over different open sets.

Example

Let $M=M^{3}$ be a 3-manifold, $G=S U(2)$, then the trivial bundle $P:=M \times S U(2)$ is a principal bundle. In fact, one can show every $S U(2)$-principal bundle over M^{3} is trivial.

Gauge group \mathcal{G}

The gauge group $\mathcal{G}:=\operatorname{Aut}(P)$, i.e. the group of G-equivariant maps $P \rightarrow P$ that preserve the fibres of P. Since it preserves the fibre, and each fibre is generated by the action of G, an element in \mathcal{G} can also be thought of as equivariant map from P to G.

Adjoint Bundle AdP

$\operatorname{Ad} P:=P \times_{A d} \mathfrak{g}$, i.e. $(P \times \mathfrak{g}) / G$ where G acts on its lie algebra \mathfrak{g} via the adjoint representation.

Example

$P:=M \times S U(2)$ as in the previous example. Then $\operatorname{Ad} P \cong M \times \mathfrak{s u}(2)$.

Background: Differential Geometry

Connections $A \in \mathcal{A}$

A connection (locally on U) at
$(x, g) \in U \times G$ is given by $A=g^{-1} d g+g A_{U} g_{-1}$ where A_{U} is a one-form on U with values in the lie algebra \mathfrak{g} of G. Explicitly, if $x=\left(x^{1}, \ldots, x^{n}\right)$ are coordinates on U, and $E_{i}: U \rightarrow \mathfrak{g},\left.A_{U}\right|_{\mathrm{x}}=\sum_{i} E_{i}(\mathrm{x}) \otimes d x^{i}$. Warning: this depends on our choice of coordinates. We will denote the space of connections on a fixed bundle \mathcal{A}.

Background: Differential Geometry

Connections $A \in \mathcal{A}$

A connection (locally on U) at
$(x, g) \in U \times G$ is given by $A=g^{-1} d g+g A_{U} g_{-1}$ where A_{U} is a one-form on U with values in the lie algebra \mathfrak{g} of G. Explicitly, if $x=\left(x^{1}, \ldots, x^{n}\right)$ are coordinates on U, and $E_{i}: U \rightarrow \mathfrak{g},\left.A_{U}\right|_{\mathrm{x}}=\sum_{i} E_{i}(\mathrm{x}) \otimes d x^{i}$. Warning: this depends on our choice of coordinates. We will denote the space of connections on a fixed bundle \mathcal{A}.

There is an action of $\phi \in \mathcal{G}$ (viewed as an element of G) on \mathcal{A} given by:
$A_{U} \mapsto \phi d \phi+\phi^{-1} A_{U} \phi$.

Background: Differential Geometry

Connections $A \in \mathcal{A}$

A connection (locally on U) at $(x, g) \in U \times G$ is given by $A=g^{-1} d g+g A_{U} g_{-1}$ where A_{U} is a one-form on U with values in the lie algebra \mathfrak{g} of G. Explicitly, if $x=\left(x^{1}, \ldots, x^{n}\right)$ are coordinates on U, and $E_{i}: U \rightarrow \mathfrak{g},\left.A_{U}\right|_{x}=\sum_{i} E_{i}(x) \otimes d x^{i}$. Warning: this depends on our choice of coordinates. We will denote the space of connections on a fixed bundle \mathcal{A}.

There is an action of $\phi \in \mathcal{G}$ (viewed as an element of G) on \mathcal{A} given by:
$A_{U} \mapsto \phi d \phi+\phi^{-1} A_{U} \phi$.

Curvature F_{A}

The curvature of a connection A is defined by $F_{A}:=d A+A \wedge A$. Here $A \wedge A$ means I take the Lie bracket of the lie algebra part of A and the wedge product of the one-form part. This is a 2-form with values in \mathfrak{g}.

Background: Differential Geometry

Connections $A \in \mathcal{A}$

A connection (locally on U) at $(x, g) \in U \times G$ is given by $A=g^{-1} d g+g A_{u} g_{-1}$ where A_{U} is a one-form on U with values in the lie algebra \mathfrak{g} of G. Explicitly, if $x=\left(x^{1}, \ldots, x^{n}\right)$ are coordinates on U, and $E_{i}: U \rightarrow \mathfrak{g},\left.A_{U}\right|_{\mathrm{x}}=\sum_{i} E_{i}(\mathrm{x}) \otimes d x^{i}$. Warning: this depends on our choice of coordinates. We will denote the space of connections on a fixed bundle \mathcal{A}.

There is an action of $\phi \in \mathcal{G}$ (viewed as an element of G) on \mathcal{A} given by:
$A_{U} \mapsto \phi d \phi+\phi^{-1} A_{U} \phi$.

Curvature F_{A}

The curvature of a connection A is defined by $F_{A}:=d A+A \wedge A$. Here $A \wedge A$ means I take the Lie bracket of the lie algebra part of A and the wedge product of the one-form part. This is a 2-form with values in \mathfrak{g}.
$\phi \in \mathcal{G}$ acts via the adjoint representation on F_{A}, i.e.
$F_{\phi(A)}=\phi^{-1} F_{A} \phi$.

Background: Differential Geometry (cont.)

Flat connections
We say a connection is flat if $F_{A}=0$. Note that this condition is preserved by the action of \mathcal{G}.

Background: Differential Geometry (cont.)

Flat connections

We say a connection is flat if $F_{A}=0$. Note that this condition is preserved by the action of \mathcal{G}.

Example

Let $P=M \times S U(2)$ be as in the previous example, then a flat connection is given by the trivial connection $\Gamma, \Gamma:=g^{-1} d g$.

Background: Differential Geometry (cont.)

Flat connections

We say a connection is flat if $F_{A}=0$. Note that this condition is preserved by the action of \mathcal{G}.

Example

Let $P=M \times S U(2)$ be as in the previous example, then a flat connection is given by the trivial connection $\Gamma, \Gamma:=g^{-1} d g$.

Fact

\mathcal{A} is an affine space w.r.t to $\operatorname{AdP} P \Omega^{1}(M)$: i.e.
$A-A^{\prime} \in \operatorname{Ad} P \otimes \Omega^{1}(M)$ for $A, A^{\prime} \in \mathcal{A}$

Background: Differential Geometry (cont.)

Flat connections

We say a connection is flat if $F_{A}=0$. Note that this condition is preserved by the action of \mathcal{G}.

Example

Let $P=M \times S U(2)$ be as in the previous example, then a flat connection is given by the trivial connection $\Gamma, \Gamma:=g^{-1} d g$.

Fact

\mathcal{A} is an affine space w.r.t to $\operatorname{AdP} P \Omega^{1}(M)$: i.e.
$A-A^{\prime} \in \operatorname{Ad} P \otimes \Omega^{1}(M)$ for $A, A^{\prime} \in \mathcal{A}$

Example

Let $P=M \times S U(2)$, as in the previous example, then $\mathcal{A}-\Gamma=\mathfrak{s u}(2) \otimes \Omega^{1}(M)$.

Background: Differential Geometry (cont.)

Flat connections

We say a connection is flat if $F_{A}=0$. Note that this condition is preserved by the action of \mathcal{G}.

Example

Let $P=M \times S U(2)$ be as in the previous example, then a flat connection is given by the trivial connection $\Gamma, \Gamma:=g^{-1} d g$.

Fact

\mathcal{A} is an affine space w.r.t to $\operatorname{AdP} P \Omega^{1}(M)$: i.e.
$A-A^{\prime} \in \operatorname{Ad} P \otimes \Omega^{1}(M)$ for $A, A^{\prime} \in \mathcal{A}$

Example

Let $P=M \times S U(2)$, as in the previous example, then $\mathcal{A}-\Gamma=\mathfrak{s u}(2) \otimes \Omega^{1}(M)$.

Theorem

There is a bijection of sets $\{A \in \mathcal{A} \mid$ $\left.F_{A}=0\right\} / \mathcal{G}=\operatorname{hom}\left(\pi_{1}(M), G\right) / G$, where G acts via conjugation on hom $\left(\pi_{1}(M), G\right) / G$.

Motivations

In finding invariants, we usually take some bundle our manifold with $G=U(1), S U(2)$ or $S O(3)$. The $U(1)$ case, while interesting, is somewhat different to the $S U(2) / S O(3)$ cases. Examples of the latter:

Motivations

In finding invariants, we usually take some bundle our manifold with $G=U(1), S U(2)$ or $S O(3)$. The $U(1)$ case, while interesting, is somewhat different to the $S U(2) / S O(3)$ cases. Examples of the latter:

- Instanton Floer Homology for 3-manifolds

Motivations

In finding invariants, we usually take some bundle our manifold with $G=U(1), S U(2)$ or $S O(3)$. The $U(1)$ case, while interesting, is somewhat different to the $S U(2) / S O(3)$ cases. Examples of the latter:

- Instanton Floer Homology for 3-manifolds

■ Donaldson Invariants for 4-manifolds - e.g. existence of infinitely many non-smooth manifolds, exotic \mathbb{R}^{4}.

Motivations

In finding invariants, we usually take some bundle our manifold with $G=U(1), S U(2)$ or $S O(3)$. The $U(1)$ case, while interesting, is somewhat different to the $S U(2) / S O(3)$ cases. Examples of the latter:

- Instanton Floer Homology for 3-manifolds

■ Donaldson Invariants for 4-manifolds - e.g. existence of infinitely many non-smooth manifolds, exotic \mathbb{R}^{4}.

■ Donaldson-Segal programme for gauge theory in higher dimensions.

Motivations

In finding invariants, we usually take some bundle our manifold with $G=U(1), S U(2)$ or $S O(3)$. The $U(1)$ case, while interesting, is somewhat different to the $S U(2) / S O(3)$ cases. Examples of the latter:

- Instanton Floer Homology for 3-manifolds

■ Donaldson Invariants for 4-manifolds - e.g. existence of infinitely many non-smooth manifolds, exotic \mathbb{R}^{4}.

■ Donaldson-Segal programme for gauge theory in higher dimensions.
Now we are armed with some facts about connections, we will look at an example: a simple type of gauge invariant called the Casson invariant (interpretation due to Taubes).

Casson Invariant

Let M be a compact 3-manifold with a trivial bundle $P=M \times S U(2)$. Then $\mathcal{A}-\Gamma=\mathfrak{s u}(2) \otimes \Omega^{1}(M)$. Let $\mathcal{A}^{\#} \subset \mathcal{A}$ denote the subset where \mathcal{G} acts with stabiliser ± 1 and denote $\mathcal{B}:=\mathcal{A} / \mathcal{G}$ (likewise $\mathcal{B}^{\#}$) We will assume M is a homology-sphere, i.e. $H_{*}(M)=H_{*}\left(S^{3}\right)$.

Casson Invariant

Let M be a compact 3-manifold with a trivial bundle $P=M \times S U(2)$. Then $\mathcal{A}-\Gamma=\mathfrak{s u}(2) \otimes \Omega^{1}(M)$. Let $\mathcal{A}^{\#} \subset \mathcal{A}$ denote the subset where \mathcal{G} acts with stabiliser ± 1 and denote $\mathcal{B}:=\mathcal{A} / \mathcal{G}$ (likewise $\mathcal{B}^{\#}$) We will assume M is a homology-sphere, i.e. $H_{*}(M)=H_{*}\left(S^{3}\right)$.

Fact

$\mathcal{B}^{\#}$ is an infinite dimensional smooth manifold.

Casson Invariant

Let M be a compact 3-manifold with a trivial bundle $P=M \times S U(2)$. Then $\mathcal{A}-\Gamma=\mathfrak{s u}(2) \otimes \Omega^{1}(M)$. Let $\mathcal{A}^{\#} \subset \mathcal{A}$ denote the subset where \mathcal{G} acts with stabiliser ± 1 and denote $\mathcal{B}:=\mathcal{A} / \mathcal{G}$ (likewise $\mathcal{B}^{\#}$) We will assume M is a homology-sphere, i.e. $H_{*}(M)=H_{*}\left(S^{3}\right)$.

Fact

$\mathcal{B}^{\#}$ is an infinite dimensional smooth manifold.
Casson Invariant $C_{a}(M)$
Informally, the Casson invariant is "the signed count of flat connections on $P^{\prime \prime}$, or "the Euler characteristic of $\mathcal{B}^{\#}$ ".

Analogy

If (M, g) Riemannian manifold, v (non-degenerate) v.field, then:

$$
\chi(M)=\sum_{p \mid v(p)=0} \operatorname{sign}\left(\left.\operatorname{det} \nabla v\right|_{p}\right)
$$

Here ∇ is the Levi-Cevita connection on (M, g). At each point $p,\left.\nabla v\right|_{p}$ is a finite dimensional matrix on $T_{p} M$.

Analogy

If (M, g) Riemannian manifold, v (non-degenerate) v.field, then:

$$
\chi(M)=\sum_{p \mid v(p)=0} \operatorname{sign}\left(\left.\operatorname{det} \nabla v\right|_{p}\right)
$$

Here ∇ is the Levi-Cevita connection on (M, g). At each point $p,\left.\nabla v\right|_{p}$ is a finite dimensional matrix on $T_{p} M$.

Strategy

Define a one-form on $\mathcal{B}^{\#}$, use some metric to make it a vector field, and find a way to take its derivative, and make sense of sign of determinants in infinite dimensional space $T_{[A]} \mathcal{B}^{\#}$.

Identify $T_{A} \mathcal{A}$ with the vector space $\mathfrak{s u}(2) \otimes \Omega_{p}^{1}(M)$. We use the one-form:

$$
\begin{gathered}
\mathfrak{f}: \mathcal{A} \rightarrow T^{*} \mathcal{A} \\
f_{A}(a):=\int_{M} \operatorname{tr}\left(a \wedge F_{A}\right)
\end{gathered}
$$

This descends to \mathcal{B}, and the flat connections are its zeroes.

Identify $T_{A} \mathcal{A}$ with the vector space $\mathfrak{s u}(2) \otimes \Omega_{p}^{1}(M)$. We use the one-form:

$$
\begin{gathered}
\mathfrak{f}: \mathcal{A} \rightarrow T^{*} \mathcal{A} \\
\mathfrak{f}_{A}(a):=\int_{M} \operatorname{tr}\left(a \wedge F_{A}\right)
\end{gathered}
$$

This descends to \mathcal{B}, and the flat connections are its zeroes.

Also equip M with a Riemannian metric with Hodge star $*$, then use the metric on \mathcal{A} :

$$
\langle a, b\rangle=-\int_{M} \operatorname{tr}(a \wedge * b)
$$

Identify $T_{A} \mathcal{A}$ with the vector space $\mathfrak{s u}(2) \otimes \Omega_{p}^{1}(M)$. We use the one-form:

$$
\begin{gathered}
\mathfrak{f}: \mathcal{A} \rightarrow T^{*} \mathcal{A} \\
\mathfrak{f}_{A}(a):=\int_{M} \operatorname{tr}\left(a \wedge F_{A}\right)
\end{gathered}
$$

This descends to \mathcal{B}, and the flat connections are its zeroes.

Also equip M with a Riemannian metric with Hodge star $*$, then use the metric on \mathcal{A} :

$$
\langle a, b\rangle=-\int_{M} \operatorname{tr}(a \wedge * b)
$$

There is a natural notion of a covariant derivative (omitting details) to get $\nabla \mathfrak{f}_{A}$, an infinite-dimensional matrix on $T_{[A]} \mathcal{B}^{\#}$.

Lemma

$\nabla \mathfrak{f}_{A}$ is closed, has real, discrete eigenvalues, and the set of eigenvalues has no accumulation points.

Lemma

$\nabla \mathfrak{f}_{A}$ is closed, has real, discrete eigenvalues, and the set of eigenvalues has no accumulation points.

Can assume 0 is not an eigenvalue (non-trivial). Set of eigenvalues of $\nabla \mathfrak{f}_{A}$ looks like a bunch of points on the real line.

Lemma

$\nabla \mathfrak{f}_{A}$ is closed, has real, discrete eigenvalues, and the set of eigenvalues has no accumulation points.

Can assume 0 is not an eigenvalue (non-trivial). Set of eigenvalues of $\nabla \mathfrak{f}_{A}$ looks like a bunch of points on the real line.

Spectral Flow

So for such $[A],\left[A^{\prime}\right] \in \mathcal{B}^{\#}$, pick a path between them in $\mathcal{B}^{\#}$, define: $n\left(A, A^{\prime}\right)=\left(\#\right.$ eigenvalues of $\nabla \mathfrak{f}_{A}$ crossing 0 from the right \# eigenvalues of $\nabla \mathfrak{f}_{A}$ crossing 0 from the left) $\bmod 2= \pm 1$

One can show this is well-defined and path-independent.

Lemma

$\nabla \mathfrak{f}_{A}$ is closed, has real, discrete eigenvalues, and the set of eigenvalues has no accumulation points.

Can assume 0 is not an eigenvalue (non-trivial). Set of eigenvalues of $\nabla \mathfrak{f}_{A}$ looks like a bunch of points on the real line.

Spectral Flow

So for such $[A],\left[A^{\prime}\right] \in \mathcal{B}^{\#}$, pick a path between them in $\mathcal{B}^{\#}$, define:
$n\left(A, A^{\prime}\right)=\left(\#\right.$ eigenvalues of $\nabla \mathfrak{f}_{A}$ crossing 0 from the right \# eigenvalues of $\nabla \mathfrak{f}_{A}$ crossing 0 from the left) $\bmod 2= \pm 1$

One can show this is well-defined and path-independent. Pick some non-trivial flat connection $[A] \in \mathcal{B}^{\#}$, then define the (unsigned) Casson invariant:

$$
C_{a}(M)=\sum_{\left[A^{\prime}\right] \neq[A] \mid F_{A^{\prime}}=0} n\left(A, A^{\prime}\right)
$$

It turns out this is independent of the choices of Riemannian metric, and the flat connection used.

Closing Remarks

- In the case of $M=S^{3}$, there are no non-trivial flat connections, so $C_{a}\left(S^{3}\right)=0$.

Closing Remarks

- In the case of $M=S^{3}$, there are no non-trivial flat connections, so $C_{a}\left(S^{3}\right)=0$.
- Casson originally defined his invariants without gauge theory, using something called a Heegaard splitting (pictured).

Closing Remarks

- In the case of $M=S^{3}$, there are no non-trivial flat connections, so $C_{a}\left(S^{3}\right)=0$.
- Casson originally defined his invariants without gauge theory, using something called a Heegaard splitting (pictured).
- This invariant is just the beginning
 of a wider story of gauge theory, but this is the model example.

